
1

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Bonus Chapter 2
Automating Tasks and Visual
Basic for Applications

Both seasoned macro programmers and designers who don’t know a macro from
a macaroon will benefit from this chapter on CorelDRAW’s macro and Visual

Basic for Applications (VBA) programming features. Novices can use the macro
recording feature in CorelDRAW to create simple macros to automate repetitive
tasks in CorelDRAW; if you’re ambitious, you can also build macros to design very
complex artwork—later in this chapter, you’ll see an example of a background design
generated through a simple macro you can program. If you don’t fancy yourself the
programming type, you’ll also learn how to install and use macros and mini-programs
that have been written by third-party programmers.

It is easy to assign VBA macros that you’ve written yourself or downloaded from
the Web to toolbar buttons, menus, and shortcut keys in CorelDRAW. You can insert
macros right into CorelDRAW’s interface in the places where they’re handy. You put
macros to work and you can turbo-charge your workflow, making your hours much
more efficient and streamlined.

With VBA, any user can tweak or supplement CorelDRAW’s features to meet
your exact (and perhaps unique) needs. This news is very exiting when you realize
that Visual Basic is not limited to working solely within CorelDRAW. VBA can be use
to integrate work that takes place, and data that is exchanged, between CorelDRAW
and PHOTO-PAINT… and most other Corel products, including the WordPerfect
Office Suite. Your VBA automation possibilities expand beyond the Corel universe of
products to include many other applications such as Microsoft Office and Autodesk’s
AutoCAD to name but two.

Bonus-ch02.indd 1 6/19/12 5:11:28 PM

2 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

As an application in its own right, learning all the ins-and-outs of VBA can fill its
own book (and it does), and mastering CorelDRAW’s Object Model is not a small topic,
either. Everything you would need to know to master VBA control of CorelDRAW
cannot be completely documented in this one chapter, but a novice can get started
using VBA macros by reading the information here. You’ll learn how to build your
own simple macros, and if you’re so inclined, there is plenty of VBA documentation
on the Web and in other reading. If you’re a programmer, use this chapter as a quick
brush-up with pointers to CorelDRAW-specific VBA information and implementations.

Check out the Macro Programming Guide.pdf and CorelDRAW Object Model Diagram
.pdf files in the Data folder in the CorelDRAW Graphics Suite X6 folder on your hard
drive for comprehensive and well-organized details on macro structure.

Download and extract the example files in BonusChapter2.zip

What’s Possible with VBA?
You can build simple macros from the ground up that perform everyday tasks, such
as creating a rectangle or an ellipse shape. Other operations that aren’t a challenge
to program are to move and resize objects on the page, change object colors, rotate,
extrude, and do almost anything you would normally do in CorelDRAW by click-
dragging and using menu commands.

VBA, more precisely, CorelDRAW’s Object Model, gives developers access to control
most of CorelDRAW through programmed code. Using VBA, you can record and write
small, ten-line programs that perform specific tasks. You can then assign macros
to buttons, menus, or shortcut keys in CorelDRAW for easy access. Alternatively,
you can build mini-applications of many hundreds or thousands of lines of code
for performing complex tasks that are otherwise difficult or even impossibly time-
consuming to execute with a mouse and keyboard alone.

Introducing VBA in CorelDRAW
The big news here for programmers (beginners most likely won’t immediately benefit
from this new feature) is the addition of Corel Query Language (CQL) to your toolset.
Programmers will appreciate the deployment of Corel Query Language, so they can
use CQL in their VBA to search for objects, including text that has specific properties,
such as shape, fill, outline, color, and other properties.

At the core of using VBA within CorelDRAW is the CorelDRAW Object Model. An
Object Module shows parent and child relationships of objects (features) that you can
control using VBA. You can get a visual overview of the CorelDRAW Object Model by
taking a look at the CorelDRAW VBA Object Model.pdf file in the Program Files\Corel\
CorelDRAW Graphics Suite X6\Data folder.

Note

Bonus-ch02.indd 2 6/19/12 5:11:29 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 3

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Upgrading VBA Macros to X6
Most VBA macros written for earlier versions of CorelDRAW should work in
CorelDRAW X6 without any modifications. Copy the GMS files from one folder to
the other. However, some macros might fail to work because of minor changes to the
Object Model, or because they explicitly reference the CorelDRAW object instead of
referencing the CorelDRAW object. If a macro doesn’t run, you have to edit it using
the Macro Editor (alt+f11).

In Windows 7, user-created GMS files are stored in Users\(the current user)\
AppData\ Roaming\Corel\CorelDRAW Graphics Suite X6\Draw\GMS folder. The GMS
files that X6 ships with can be found in C:\Program Files\Corel\CorelDRAW Graphics
Suite X6\Draw\GMS. If you’re running Windows XP, it’s easy to perform a wildcard
search for the GMS files: double-click My Computer on your Desktop, navigate to your
boot drive (usually C), and then click the Search button toward the top of the folder
window. Click All Files And Folders in the “What do you want to search for?” area, and
then type *.gms in the All Or Part Of The File Name entry field. Click Search.

Working with Existing Macros
CorelDRAW ships with some macros; the Internet is a great place to find macros; and
you may even be given a document that contains macros that a colleague created. So
how do you get them to work?

Installing an Existing Macro
Macros are distributed as single project files in the *.GMS file format (“Global Macro”).
They may also have accompanying “helper” files. You might download a macro in a
zip archive where you extract and copy the included files into your GMS folder, or the
developer may have packaged it up with an install program that automatically puts
the GMS file and any related files in the correct place for you.

The other way to obtain a macro is to receive it embedded in a CorelDRAW
drawing; the CDR file format can hold onto a macro, a very convenient way to share
macros. When you open a CDR file that has a macro embedded in it, a Security
Warning dialog box appears, asking if you want to Disable Macros or Enable Macros or
get More Info, as shown here.

Bonus-ch02.indd 3 6/19/12 5:11:29 PM

4 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

If you’ve received the document from a trusted source, in other words, from a
coworker and not as an e-mail attachment with a subject line telling you you’ve won
a lot of money, and you think that you will need to use the macros contained in the
document, you should choose to Enable Macros. But if you’re unsure, choose Disable
Macros. Disable Macros does what it implies, but you can use the Macro Editor to view
the macros so you can determine if they are safe and you want to use them, as shown
here. To use a macro you’ve chosen to disable, close the CorelDRAW file, reopen the
file, and then choose Enable Macros.

Nothing suspicious,
embedded macro is okay.

Running an Existing Macro
To run a macro, choose Tools | Macros | Run Macros to bring up the CorelDRAW Visual
Basic for Applications dialog. From the Macros In drop-down list, choose the VBA
project that contains the macro you want to run. Any macros stored in the VBA project
file you chose are displayed in the Macro Name field. If the macro was created entirely
in the VB Editor and not recorded, this macro is displayed at the top of the list. Recorded
macros you’ve created appear later in the list and the name of the macro appears as
RecoRdedMacRosMacRoNaMeYouGaveYouRMacRo. Select the macro you want to run in
the Macro Name list and then click the Run button.

Bonus-ch02.indd 4 6/19/12 5:11:29 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 5

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

If the macro was created by programming, it might pop up a dialog box or
interface for you to set options for what the macro does, or where in the document
the macro performs its task. If no interface is provided, the macro probably performs
its actions in the active document. Some macros may only work if there is an active
selection in the document at the time you run the macro, so if nothing appears to
have happened (an extrude, a move, a color change, for example), try selecting an
object and then run the macro again.

CorelDRAW comes with very useful CalendarWizard.gms and FileConverter
.gms project files, that are VBA macro-based mini-applications. You really owe it to
yourself to open a new file and run these macros; the Calendar Wizard alone can
shave hours off designing a custom calendar for business or the home. However, make
your own macro is not difficult; you know best what your own automation needs are.
Don’t be intimidated by lines of seemingly incomprehensible code: recording a macro
is the easiest way to create a macro, the topic of the following sections.

Global vs. Local Projects
When you make your own macros you have a choice of making it a local or global
macro. If you want to make the macro you’re recording available for use only in
the current open document, you store it in the document. However, if you want the
macro available whenever you use CorelDRAW—or you want to share the macros
with others—you need to create a new VBA project and store the project file in the
GSM folder. Storing your macro work in any of the projects that Corel has provided, or
those from third-party developers, is not a good idea. Make your own project file for
your work, and back it up regularly.

Project files are not created in CorelDRAW or in the VBA Editor. To create a project
file, close CorelDRAW, and open a text editor such as Notepad. Open a new file
in Notepad and without typing anything in the file, save it to C:\\Users\your user
name\AppData\Roaming\Corel\CorelDRAW Graphics Suite X6\Draw\GMS. When
saving it, give it a filename (up to 40 characters) that contains only letters,
numbers, and underscores, and no spaces. Be sure to give the file a .gms file
extension, for example MyMacroProjects_1.gms; note there are no spaces in this
example filename. Restart CorelDRAW and the MyMacroProjects_1 will appear in the
Save Macro dialog as one of the places you can save the macro.

Recording a Macro
You might have recorded a macro in other programs before; if so, you won’t find the
process very different here in CorelDRAW—it’s quite easy. Macros can be recorded
using the Macros Toolbar, which contains VCR-like controls for starting, pausing,
and stopping the macro recorder. Or you can skip the recorder and make a macro by
performing your actions and then saving your macro using the Undo docker. Both
methods produce similar results.

Next is a walk-through on recording a macro using the Macros Toolbar.

Note

Bonus-ch02.indd 5 6/19/12 5:11:29 PM

6 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

The macro recorder cannot work with text. It only works with simple shapes. If you
need to do something to text you have enter the text and then convert it to curves
before you start recording your macro. The recorder also doesn’t work well other
complex objects, so you may have to break things apart and ungroup them before
they can be part of a recorded macro.

Tutorial Recording a Macro:
Filling a Page with Confetti

Open a new document. This is the document where you’ll perform the actions 1.
that make up the macro. Save the file as Macro for making confetti.cdr.
With the Ellipse tool, create an ellipse that’s about an inch wide. Then fill it with 2.
a color on the Color Palette, give it a 4-pixel outline width by using the Property
Bar, and then assign the outline a color. The colors you choose will be written to
the macro, and when you run the macro, these colors will be used; choose colors
that appeal to you! Leave the object selected for the following steps.
Right-click on any of the toolbars at the top of the application window. From 3.
the pop-up menu choose the Macros Toolbar. The list of macro commands
is shown in Figure 1. The Tools | Macros commands can be used to record a
macro, but it’s easier to use the Macros Toolbar.
Click the red Start Recording button on the Macros Toolbar to open the Record 4.
Macro dialog.

Tip

Figure 1 Use the Macros Toolbar much in the same way you use any onscreen
or even physical recording device. The buttons are labeled with universal symbols.

Right-click over
any toolbar.

Disable Application Events

Play Macro
Editor

Record Pause Stop

Bonus-ch02.indd 6 6/19/12 5:11:31 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 7

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

In the Macro Name field, enter a name for your macro. It must be less than 5.
40 characters, start with a letter, and contain only letters, numbers, and
underscores. No spaces are allowed in the Visual Basic programming language.
Click the icon in the Save Macro In field that represents the project or file
in which you want the macro saved. In these steps you’ll save locally in the
current document; click the VBAProject (Macro for making Confetti.cdr)
icon. Write any notes about the purpose of the macro, the date, the version
number of the macro, or any other useful information about the macro in the
Description section. Click OK and you’re recording now.
With the Pick Tool, click-drag the ellipse to a different location on the page, 6.
and then before releasing the left mouse button, right-click to drop a copy of
the ellipse.
Scale the duplicate ellipse to about 50 percent, and then recolor it.7.
Marquee-select both ellipses and then repeat Step 6.8.
Repeat Steps 6 and 7; you’re populating the page with different-colored, 9.
different-sized ellipses. The beauty of this macro is that in the future you don’t
have to repeat these steps! Additionally, when you marquee-select multiple
ellipses try rotating the group as you reposition them by clicking within the
group as they’re selected to put the bounding box for the group into Rotate/
Skew Transformation mode. In Figure 3, you can see the steps used in this
example macro.

Figure 2 Click the icon for the save options for the macro you’ll record and
write project notes to yourself and others.

Macro will be embedded
in the saved CDR file.

Bonus-ch02.indd 7 6/19/12 5:11:31 PM

8 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Finally, click the Stop Recording button on the Macros bar.10.

Try now deleting all the objects on the page, and then create a polygon or a
rectangle. Select it and then run the macro you just created. Your recipe is the same,
but you’re using a different ingredient, as shown here. This is a simple macro, but you
can see now the potential for incredible time-savings with macros and a little head
work before you begin recording. Because the macro was saved in this document, it is
only available for use in this document.

Recorded macro result Macro applied to a different object

Figure 3 Start recording, make some transformations that might be tedious in
the future to repeat, and then stop recording. You now have a local macro.

Click-drag, then right-click
to drop a copy.

Recolor
Drag and drop copies,
then scale and rotate.

Bonus-ch02.indd 8 6/19/12 5:11:31 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 9

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

If you later decide that you want to use a macro that is stored in a user document
with other files, you can use the Macro Editor to copy the macro into other VBA
project documents.

If you’d like to experiment with a document that contains a finished macro, open
the Macro for making confetti.cdr document you downloaded at the beginning of this
chapter.

Saving Undo Lists as VBA Macros
Lists of Undo Actions can be saved as a VBA macro from the
Undo docker as an alternative to recording them. To open
the Undo docker, shown at right, choose Window | Docker |
Undo, shown here after several actions have been performed
on an object.

The list that you see contains the available actions that
you can undo or redo using Edit | Undo and Edit | Redo for
the active document; Undo and Redo are also registered
on the Undo docker when you use these buttons on the
Standard Bar. The last-action highlight indicates the last
action you performed, which is also the action that is undone
if you choose Edit | Undo. If you choose Edit | Repeat, the
highlighted item is repeated, if it’s repeatable. Clicking any
action in the list undoes or redoes any actions between it and
the last action highlighted on the docker.

If you click the Save List button, the list of commands starting at—but not
including—File New and up to the selected command are saved to a VBA macro.
Clicking the Save List button opens the Save Macro dialog. Choose a suitable name,
project, and description, and then click OK.

The Clear Undo List button removes all Undo and Redo items in the list, an
action that in itself can’t be undone. If you clear the list, you will not be able to undo
anything already done in CorelDRAW. However, if you want to save an Undo list as
a macro, clearing the list before you perform your actions is a good idea because it
removes all the other actions that you don’t want included in your macro.

Playing Back Recorded or Saved Macros
To play back a macro that comes with CorelDRAW, a third-party macro, or any valid
macro that you have written yourself, click the Play button on the Macros Toolbar, or
choose Tools | Macros | Run Macro. The Run Macro dialog appears, where you can
choose the macro you want to run.

Choose the correct project in the Macros In list, and then select the macro you
want to run in the Macro Name list. Then click the Run Macro button.

Tip

Bonus-ch02.indd 9 6/19/12 5:11:32 PM

10 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Writing a Macro
Creating macros by recording is easy, but unfortunately, there are a lot of things
that cannot be accomplished by recording and that only can be done through
programming. Therefore, a taste of programming language, and programming
possibilities, using VBA is covered in the following sections.

Programming Term Definitions
Programming, in a nutshell, is less art and much more science. The English language
can state ideas ambiguously. Therefore, it’s important to understand a few VBA key
words. Some of the following definitions are subtle, but they make the discussion
easier as you progress through these sections.

You’ll find a more complete explanation of terms in the CorelDRAW Graphics
SuiteX6\Data\Macro Programming Guide.pdf.

Project • Projects group together related modules and forms into a single file.
Project files are stored as separate files with the extension .GMS.
Module • A module is a VBA document that contains the individual macros.
Modules can be normal modules, class modules (not discussed here), or forms.
Form • A form is a window that contains the user interface for your macro. Forms
are also known as dialogs and can contain buttons, boxes, options, text input
areas, static text, drop-down lists, and more.
Shape • A shape is the term used for any object in a CorelDRAW drawing—many
people call them objects, but object means something different in VBA.
Object • Objects have a special meaning in VBA: an object in VBA is the general
name for any aspect of CorelDRAW that can be named and programmed, such as
shape, layer, page, or document, and dozens of other items.
Object Model • The Object Model is the “wiring” between VBA (or any other
programming language) and the CorelDRAW document—without the Object
Model, it is simply not possible for you to control the shapes in the document, or
even the document’s other settings. The Object Model gives everything an object
name, so you can get a reference to anything and then modify it.
Member • Objects are usually made from smaller objects called members.
Members can be subobjects, properties, and methods. As an analogy, a car is an
object, but it has an engine and four wheels that are subobjects.
Property • One aspect of objects is that they have properties. A property is a
characteristic of an object, such as size, position, or color. You can access these
properties with VBA.
Method • A method is a task that the object can perform when you tell it to:
“Resize yourself to three inches wide,” “Move one inch to the right,” “Rotate
10 degrees,” “Group with the other shapes,” “Delete yourself.” Methods are often
called member functions.

Tip

Bonus-ch02.indd 10 6/19/12 5:11:33 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 11

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Macro, sub, function, and procedure • All these mean broadly the same thing:
a block of code that has a clearly defined start point and end point. We use the
word “macro” as a general term for sub, function, method, or program, although its
original meaning is “a collection of keystrokes.” A sub, or subroutine, is a piece of
code that performs some task and then returns control to the object that called
it. A function is a piece of code that performs a task and then returns a value to
the object that called it. You can see that subs and functions are basically the
same things, but a function returns a value (a number or text), and a sub does
not. (Note that this is different from languages like C++ or Java, in which all
procedures are functions and always return a value, even if it is just zero.)

Introducing the VBA Editor
The VBA Editor is written by Microsoft and licensed to Corel for inclusion in CorelDRAW.
This means that while the CorelDRAW Object Model is the responsibility of Corel, the
VBA Editor is solely Microsoft’s. The big advantage here is that the VBA Editor is mature,
refined, and first class, as it derives so much from Microsoft’s long line of software
development tools. Another advantage is the fact that VBA is a variant of Visual Basic, so
anyone with VB experience will be able to use VBA without additional learning. And if
you are just starting out, what you learn here will give you a leg up when working with
VBA or Visual Basic in other programs.

The VBA Editor includes many features designed to assist the programmer,
including the following:

Syntax Check • This feature checks each line as you type it and immediately
identifies any problems it finds by marking the code with red.
Auto List Members • A list of all valid members of an object pops up, from
which you can choose one, or you can type it yourself.
Auto Indenting and Formatting • The Editor tidies up your code and
automatically formats the code to maintain a uniform look, which makes it easier
to read and debug.
Color Coding • The editor colorizes the code according to whether the words are
reserved keywords (blue), remarks (green), errors (red), or normal code (black);
the colors can be customized.
Form Designer • You can quickly design powerful custom forms (dialog boxes)
for your macro’s user interface containing any of the standard controls, such as
buttons, lists, text-entry boxes, and labels.

You’ll discover many other useful features of the VBA Editor once you start using it.

Although CorelDRAW uses “VBA,” the editor is borrowed from full Visual Basic, and
is known as the “Macro Editor.”

Tip

Bonus-ch02.indd 11 6/19/12 5:11:34 PM

12 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

The Macro Editor Layout
The Macro Editor has three main areas: menus and toolbars, dockers, and code and
Form Designer windows. These are shown in Figure 4.

The most important window in the Macro Editor is the code window, as this
is where you do most of your hands-on programming. The code window is a text-
editor window where your code is listed, and where you can enter new code and edit
existing code. The next most important window is the Project Explorer, which enables
you to navigate among all the modules and components of all your open projects. The
Properties window is also important, particularly if you are editing forms.

Figure 4 The window layout of the Macro Editor

Form Designer ToolboxForm Designer window
Run, Break,

Reset buttonsProject Explorer

Properties window Code window Procedure ListObject List

Bonus-ch02.indd 12 6/19/12 5:11:35 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 13

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

The final powerful feature of the Macro Editor is the Object Browser. This is a
fundamental tool you can use when you decide to start programming by hand, rather
than just recording macros.

Each of these parts of the Macro Editor is described in the following sections.
A more thorough description is presented in Corel’s CorelDRAW Macro Programming
Guide. Also, any good general VBA book provides additional detail.

The Project Explorer
The Project Explorer, shown in Figure 4, can be switched on by choosing View | Project
Explorer or by pressing ctRl+R. It lists all the loaded projects (GMS files) and all the
modules that they contain separated into folders. It is simple to use the Project Explorer
to keep your VBA code organized.

You can perform various filing operations within the Project Explorer, including
creating new modules, importing and exporting modules, and deleting modules.
These are explained next:

Opening modules and forms • You can open a module or form simply by
double-clicking it in the Project Explorer, or by right-clicking and choosing View
Code from the pop-up menu. Forms have two parts—the visual controls and the
code. Double-clicking displays the controls; right-clicking and choosing View Code
displays the code. Or, you can press f7 to open the selected module or form.
Creating new modules and forms • Right-click a project you want and choose
either Insert | Module or Insert | UserForm. The new module or form is added
to the appropriate subfolder. You can name the module or form in the Properties
window, and the naming convention is the same as for naming macros (no spaces
or special characters).
Exporting • Right-click the module or form that you want to export and choose
Export File from the pop-up menu. This is a simple way to share small parts of
your work with other people.
Importing • Right-click anywhere within the project you want to import a
module or form into and choose Import File from the pop-up menu.
Deleting modules • You can delete a module or form by right-clicking it and
choosing Remove from the pop-up menu. This actually removes the module from
the project file. So if you want to keep a copy of it, you must export it first.

The Code Window
The Macro Editor code window has several interesting features: the main code entry
area, the Object List, and the Procedure List, as shown in Figure 4. The code window
shows the code from a single module, a class module, or a form, although you can
have as many code windows as you like open at the same time. Press ctRl+tab to
cycle through the windows, or choose a window from the window list at the bottom of
the Window menu.

The Object List at the top of the code window lists the available objects for that
module. If a module is displayed, only one object—the “(General)” object—appears.
If a form’s code window is open, all the form’s controls (buttons, labels, text boxes,

Bonus-ch02.indd 13 6/19/12 5:11:35 PM

14 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

list boxes, and so on) are listed as well as (General). The Procedure List names the
available procedures for the selected object. For most modules, this is merely a list
of all the subs and functions. (VBA records macros as subroutines, which it identifies
with the keyword sub.) Basically, these two lists give you a table of contents for
zooming around large modules. Some modules can grow to several hundred—or
even thousands of—lines in length, so such assistance is welcome.

The Object Browser
The Object Browser is a central tool for programming CorelDRAW. The Object Browser
shows you how every object, member function, and property within CorelDRAW
fits together—and it shows you the exact syntax you must use (the exact words and
variables). To start the Object Browser, shown in Figure 5, choose View | Object
Browser, or press f2.

In the Object Browser, the Classes list at the lower left shows object types,
or classes, that exist within CorelDRAW. Each class may exist as a subobject of
CorelDRAW’s main Application object, or it may be a subobject of a subobject.

Figure 5 The Object Browser provides an insight into CorelDRAW’s Object Model.

Bonus-ch02.indd 14 6/19/12 5:11:35 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 15

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

The list to its right shows the members of the selected class, including all of its
properties, methods (subs and functions), and events (not many). The bottom area
of the window shows the member’s definition, including its parameters. You can
click any green words in this area, and you will be taken straight to the definition
for that item. The Object Browser also offers a search button (the binoculars icon)
to help locate the definition you are looking for. Clicking any item in the Search
Results window takes you to that object’s definition, as shown in Figure 5.

The Object Browser is a powerful tool, and once you are familiar with VBA, it is
quick to use the Object Browser to find a particular definition.

Auto Syntax Check
An Auto Syntax Check occurs every time you leave one line of code to move to a
different line. The Macro Editor reads the line from that you just moved and checks
the syntax, or the code you just typed. If any obvious errors are found—perhaps
you missed a parenthesis, or the word Then from an If statement—that line will be
highlighted in red.

In its default state, the Macro Editor will use a pop-up message box to tell you
about every error. Choose Tools | Options in the Macro Editor, and disable the Auto
Syntax Check option: the line will still be highlighted in red, but you won’t get any
obtrusive messages.

Auto List Members
Each object in VBA has a set of associated members—properties and functions that
the object “owns.” With Auto List Members enabled in the Macro Editor’s Options
dialog (Tools | Options), when you type a dot or period (.) after a valid object name,
that object’s member properties and functions pop up in a scrolling list. You can
choose one of the properties from the list by scrolling down to it and clicking it, or
by selecting it and pressing tab.

If you want to use this feature on a new line, right-click and choose List Properties/
Methods, or press ctRl+space.

Form Designer
The Form Designer is used for designing objects called forms. Every dialog box consists
of a form—a blank panel on which you can place buttons, check boxes, text boxes, title
bar, lists, groups, labels, and other controls. Forms are effectively empty dialogs—until
you put controls in them.

To design a good, easy-to-use form takes practice. Because this chapter only
introduces the basics of VBA, and because forms are generally used only in complex
macros and applications, designing forms is not covered here. However, if you need
to design a form, keep the following points in mind:

Keep it simple. • There’s nothing worse than a form that is too intricate or overly
clever. Keep your forms simple. Use only necessary controls.
Make it usable. • If you make the form illogical and difficult to use, you and your
users will be unhappy and unimpressed. A usable, logical layout is important.

Bonus-ch02.indd 15 6/19/12 5:11:35 PM

16 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Use a model of what has been done before. • You can learn a lot from professional
applications. Look at what makes a good form and what makes a bad one—learn
from the professionals.
Pay attention to detail. • When you have finished designing a form’s layout, check
the details of each control’s properties carefully. Make sure every control has an
AcceleratorKey. At least the most important controls should have a ControlTipText
each. Make sure that the TabIndex order is logical and straightforward.

Recording and Playing Macros
The quickest way for any new programmer to learn how to program CorelDRAW, or
any VBA-enabled application, is to record a few actions using the Record Macro and
then examine the code. While it is recording, the Record Macro converts your actions
into logical VBA code—you might not always get the result you expected, but that in
itself is a good lesson to learn ... and accept!

Experienced programmers can also benefit from recording macros: CorelDRAW
is vast, and finding the exact function or property name to do whatever it is you are
trying to do can take some time. Developers often record the action they need to
program, and then look at the code that the Macro Record creates, which tells them
what they need to know. They delete the recorded macro, but might use some of that
code in their own custom macro or program.

In a nutshell, the Record Macro records what it sees you doing. However, it often
interprets your actions in roundabout ways. For example, if you create a shape, and
then fill it, the recorder does not realize that each action occurs on the same shape;
it adds extra, unnecessary code that does the job, but not as efficiently as if you had
hand-coded it.

Customizing Macros in the User Interface
If you record or write macros that you use regularly, you might find it handy to assign
them to a toolbar button, a menu, or a shortcut key in CorelDRAW. This puts your
macros at your fingertips, and this is where you can use macros to optimize your
workflow, saving you time and money. Only macros that are stored in macro project
files (files with .GMS file extensions) in the GMS folder can be assigned to toolbars,
menus, or shortcut keys.

To customize your workspace and assign macros to buttons, menus, or shortcuts,
open the Options dialog (ctRl+j), and from the tree on the left, choose Workspace |
Customization | Commands to open up the Command section. From the drop-down
box, choose Macros. Select the macro you want to add to the interface from the scroll
box. Enter a description or the macro name in the Tooltip Help field. Then either assign
the selected macro a Shortcut assignment from the Shortcut Keys tab or click+drag
the macro from the scroll box and drop it on the toolbar or menu in the location that

Bonus-ch02.indd 16 6/19/12 5:11:35 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 17

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

you want the macro to appear in the interface. Figure 6 shows a user-recorded macro
dragged to the Standard Bar area where it then becomes a single button on a new
toolbar. In the Appearance area, you can even draw or choose an imported icon to
represent your macro button: the default icon will get confusing after you’ve put several
custom macros on a toolbar. You only have 16×16 pixels for your button’s canvas, so
plan accordingly and keep the design simple. Figure 6 shows a calendar icon created
with PHOTO-PAINT and imported in the BMP file format.

Looking at the Macro Code
If you are at the beginning of the learning curve for programming CorelDRAW, a
useful exercise is to record a few macros and see how they work and what the code
looks like.

Figure 6 Assign a macro to a shortcut key or put it on a toolbar as a button.

Bonus-ch02.indd 17 6/19/12 5:11:35 PM

18 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Before you start to program in VBA properly, let’s examine a VBA you’ll create
in the follow section. The term “macro” in this context means “a series of recorded
commands that imitate the user’s actions.” A macro can be run (executed) any number
of times, and the result should be the same every time.

Recording Creating New Shapes
You can look at any macro, but it is easier to understand how the code is written if
you start with something simple that you record yourself. So record a drawing of a
rectangle, about two-inches wide by one-inch high. Here are the steps to record and
save this action:

Tutorial Creating a Macro for a Rectangle
Open a new document and then first save it with the name 1. Learning Macros
.cdr. Naming the file first makes it easier to find, run, and edit the macro later.
Click the Record button on the Macros Toolbar, or choose Tools | Macros | 2.
Start Recording.
Give the macro an obvious name, such as 3. DrawRectangle. Remember: don’t
use any spaces or punctuation; the name must start with a letter and can only
contain the characters A–Z, a–z, 0–9, and _ (underscore). You’ll be reminded
with an attention box if you don’t type a valid macro name.
In the Save Macro In section, click the VBAProject (Learning Macros)—the 4.
recorded macro will be stored in the current document instead of a global
project file.
Type in a brief description, such as 5. Simple test macro; creating a rectangle.
Click OK. Don’t be fooled by the lack of activity at this point—VBA records 6.
every action you take from now until you stop.
Choose the Rectangle Tool (7. f6), and then draw a two-inch-by-one-inch
rectangle in the approximate center of the page; accuracy is not important in
this example.
Choose Tools | Macro | Stop Recording, or press 8. ctRl+shift+o, or click Stop
Recording on the Macros Toolbar.

That’s it; you can now play the macro back to create a new rectangle each time
at the same position as the original. This is not the endgame, however—the goal is to
generate a few macros you can view to gain an understanding of what’s written in the
macro document.

Let’s quickly make another macro; you’ll use these simple macros as a basis for
your work in the rest of this chapter, when you write a macro that performs functions
that cannot be captured by the macro recording process.

With the rectangle from the preceding section selected, record the application of
a 3-pt-thick blue outline and a Uniform red fill; call this macro RedFill_BlueOutline.
Stop the recording. Create a different shape, select it, and run this macro: the red fill
and blue outline are applied to the new shape.

Bonus-ch02.indd 18 6/19/12 5:11:35 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 19

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

The lesson you are about to work through is an example of how you can record
approximately what you require as a macro, and then, through a little text editing,
modify the macro later.

Solving Macro Needs with VBA
Now you’ll take a look through the code that you recorded a few sections ago. Shortly,
you’ll optimize the RedFill_BlueOutline macro. Then, you’ll create an advanced
macro, using the optimized RedFill_BlueOutline as the foundation. This advanced
macro will apply the fill and outline to the selected objects. However, it applies the
fill only to those objects that have a fill already, and it will apply the outline part only
to those objects that already have an outline. This macro demonstrates how a little
VBA programming can be a more powerful resource than the Find And Replace in
CorelDRAW when it comes to automating your work.

Viewing Macro Code
To view the VBA code that CorelDRAW created when it recorded your macro, you
need to open the project that the macro is stored in in the Macro Editor, also called
the Microsoft Visual Basic for Applications Editor. Open the Macro Editor by pressing
alt+f11, or click Macro Editor on the Macros Toolbar. Look for VBAProject (Learning
Macros) in the Project Explorer pane on the left side of the Editor window. Each open
document that has a macro stored in it, as well as the global macro project files that
are stored in the GMS folder, is listed here.

Expand the listing for the VBAProject (Learning Macros). Click the plus
button to expand the Modules entry. Under the modules section, you see a listing
RecordedMacros. Each time you record a macro in this document, it is added to the
RecordedMacros module. Double-click the RecordedMacros entry in the tree listing and
a document window opens to the right, with the name of the VBAProject file, Learning
Macros - RecordedMacros (Code) on the title bar. This document window contains the
actual programming code that you recorded, which makes the macro work.

Taking a Look and Understanding
the DrawRectangle Code
In the Learning Macros - Recorded Macros (Code) window you just opened, you
should see the following code. Note that the underscore character is used to break the
lines to fit within this book’s width; this is valid to actually write in code; and using
underscores is also legitimate in Visual Basic code.

Sub DrawRectangle()

 ' Recorded 11/28/2007

 '

 ' Description:

 ' Simple test macro; creating a rectangle

 Dim s1 As Shape

 Set s1 = ActiveLayer.CreateRectangle(2.240205, 6.824638, 4.25, 5.81974)

Bonus-ch02.indd 19 6/19/12 5:11:35 PM

20 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

 s1.Fill.ApplyNoFill

 s1.Outline.SetProperties 0.006945, OutlineStyles(0), CreateCMYKColor(0,

0, 0, 100), ArrowHeads(0), ArrowHeads(0), cdrFalse, cdrFalse,

cdrOutlineButtLineCaps, cdrOutlineMiterLineJoin, 0#, 100, MiterLimit:=45#

End Sub

Here’s what the lines mean:

Sub DrawRectangle() • This is the name you gave your macro. The word “Sub”
tells VBA that this is the beginning of a subroutine. The parentheses here are
empty, but sometimes they have information inside, programmer code, but never
in a recording.
’ • Wherever you add an apostrophe, VBA completely ignores the rest of the text
on the line after the apostrophe. The green text is comment information (notes to
yourself or a coworker, for example) that is ignored by VBA.
Dim s1 As Shape • Dim is short for dimension; it reserves enough space in
memory for the variable called s1, which is of type Shape. Variables are containers
for something that is not known until the program is running. For example, if you
ask the user his or her name, you won’t know the result until the program is run
and asks the question; the answer would be stored in a string or text variable.

Variables of the type Shape are not shapes in themselves; they are a reference to
a shape. It’s more or less like a shortcut in Windows to the CorelDRW.exe file: you
can have many shortcuts (references) to the same .exe file, but they are all forward
links. The CorelDRW.exe file knows nothing of the shortcuts until one of them passes
a command along the reference. Shape variables are the same: The shape to which s1
later refers is not bound to s1; s1 is only a forward reference to that shape.

Set s1 = ActiveLayer.CreateRectangle … • This actually creates the rectangle.
The first four parameters are the left, top, right, and bottom coordinates of the
rectangle, in inches from the bottom-left corner of the page. You use Set each time
the reference stored in s1 is changed from one shape to a different shape.
s1.Fill.ApplyNoFill • This line states that the Fill property of s1 is set to no fill.
s1.Outline.SetProperties 0.006945, OutlineStyles(0), CreateCMYKColor(0, •
0, 0, 100), ArrowHeads(0), ArrowHeads(0), cdrFalse, cdrFalse,
cdrOutlineButtLineCaps, cdrOutlineMiterLineJoin, 0#, 100,
MiterLimit:=45# This last line is shown as several lines in this book, but is (and
should be entered) all on one line in the Macro Editor. This describes the outline
properties that have been assigned. In this line of code, you can see that the outline
width is 0.006945, the Outline Styles(0) means that it is a solid line, CreateCMYK Color
is set to black, and other property assignments follow. The settings that are listed
here correspond to the settings that are in effect in Outline Pen dialog.
End Sub • This closes the sub again and control passes back to the object that
called the sub, which could be VBA, CorelDRAW, or another sub or function. It
tells VBA to stop here.

Bonus-ch02.indd 20 6/19/12 5:11:36 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 21

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Characters that appear in blue are reserved keywords, which are special to VBA;
you cannot use these words as variable or procedure names. Characters that appear
in green are comments or remarks; VBA ignores these completely. Characters that
appear in red are lines with syntax errors—VBA cannot understand your fractured
VBA “grammar.” All other characters appear in black.

Here are some important things to note:

Recorded macros are created as enclosed subs, starting with a • Sub statement and
ending with an End Sub statement.
Variables are dimensioned before you use them. This means that you have to name •
a variable and set aside memory for it (dimension it) before you can do anything with
it. You are basically listing the “players” that will be participating in the program.
You use • Set to set a variable to reference that object. If the variable is a simple
variable—if it just holds a number or a string (text) and not a reference to another
object—you do not need the Set statement.

If you right-click .CreateRectangle and select Quick Info from the pop-up menu,
the definition for the .CreateRectangle method is displayed, and you can see from the
parameter names the meanings of each parameter.

If you have a look at the Layer class in the Object Browser, you’ll see quite a
few members of Layer that start with Create. These are the basic VBA shape-creation
procedures. Therefore, if you wanted an ellipse, you’d use CreateEllipse; for a polygon,
you would use CreatePolygon; or some text would use CreateArtisticText.

Although you can program the creation of Artistic Text, you cannot record it using
CorelDRAW’s Macros Toolbox.

Analyzing RedFill_BlueOutline
For this macro, you recorded two distinct actions, so the code is longer and has more
parts to it:

Sub RedFill_BlueOutline()

 ' Recorded 4/1/2008

 ' Description:

 ' Simple test macro; creating a rectangle with a fill and outline

 Dim OrigSelection As ShapeRange

 Set OrigSelection = ActiveSelectionRange

 OrigSelection.ApplyUniformFill CreateCMYKColor(0, 100, 100, 0)

 OrigSelection.SetOutlineProperties Color:=CreateCMYKColor(100, 100, 0, 0)

 OrigSelection.SetOutlineProperties 0.041665

End Sub

Sub RedFill_BlueOutline() • This line declares the beginning of the macro and
the name you assigned it. The three lines that follow, as before, are comment lines
that hold useful information for you, but are not part of the code that performs
any work.

Note

Bonus-ch02.indd 21 6/19/12 5:11:36 PM

22 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

Dim OrigSelection As ShapeRange • This first line of the program code declares
(dimensions) the term OrigSelection to be a ShapeRange. A ShapeRange is a special
VBA term that means a collection of shapes.
Set OrigSelection = ActiveSelectionRange • Here the reference OrigSelection
is set to the object ActiveSelectionRange, which is a reference to all the selected
objects in the active window.
OrigSelection.ApplyUniformFill CreateCMYKColor(0, 100, 100, 0) • This
line sets the fill of the selected shape or shapes to a Uniform Fill using CMYK Red.
OrigSelection.SetOutlineProperties Color:=CreateCMYKColor(100, 100, 0, 0) •
CMYK blue is the color specified here for the selected shape(s) outline.
OrigSelection.SetOutlineProperties 0.041665 • Here is where the width
(in inches) of the outline is specified.
End Sub • This is the end marker for this and all macros.

The next refinement to make is that the outline width as recorded in the macro
code is in inches, regardless of the fact that in the CorelDRAW application window, you
set the width in points. This is because CorelDRAW’s default document units in VBA
are inches, and you want to set the VBA document units to points, and then set the
outline width to three points.

To make this change you’ll edit the macro in the Macro Editor, not by making
changes to settings in CorelDRAW and rerecording.

Place your cursor in front of the last program line (OrigSelection.
SetOutlineProperties 0.041665) and press eNteR to create a space where you can insert
an additional line of code. Insert your cursor in the blank line you made and type in
this new line of code:

ActiveDocument.Unit = cdrPoint

Then in the next line change .041665 to 3 so that the line now reads

OrigSelection.SetOutlineProperties 3

The macro should look like this now:

Sub RedFill_BlueOutline()

 ' Recorded 4/1/2008

 '

 ' Description:

 ' Simple test macro; creating a rectangle with a fill and outline

 Dim OrigSelection As ShapeRange

 Set OrigSelection = ActiveSelectionRange

 OrigSelection.SetOutlineProperties Color:=CreateCMYKColor(100, 100, 0, 0)

 OrigSelection.ApplyUniformFill CreateCMYKColor(0, 100, 100, 0)

 ActiveDocument.Unit = cdrPoint

 OrigSelection.SetOutlineProperties 3

End Sub

Click the Save button in the Macro Editor application before testing or running the
changed macros.

Bonus-ch02.indd 22 6/19/12 5:11:36 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 23

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

CorelDRAW supports a lot of different units, including millimeters, centimeters,
meters, feet, points, pixels (whose size is determined by the property Document.
Resolution), and picas that you can set in your macros using this technique.

Extending RedFill_BlueOutline
Let’s now take the basic RedFill_BlueOutline macro and add some extra code. The fill is
applied to the selected shapes that already have fills, and the outline is applied to the
selected shapes that already have outlines, but neither is applied to those shapes that
neither have one nor the other. To do this, you’ll add two fundamental programming
methods: the loop and the decision.

First, however, you should know about a powerful feature in VBA: the collection.

Collections
VBA provides the programmer with a strong method of handling many similar objects
as one object—a collection. Say that you have selected ten shapes in CorelDRAW, and
you run a script that starts like this:

Dim shs as Shapes

Set shs = ActiveSelection.Shapes

The variable shs is dimensioned as type Shapes. The Shapes type is a type of
collection of many Shape objects. Think of it as a container that can hold many
references to similar objects. The type Shape (singular) means anything drawn in
CorelDRAW, so the collection of Shapes contains lots of references to Shape—to items
drawn in CorelDRAW. Collections are a particular type of array, if you have done any
programming before you’re already familiar with arrays.

Here’s the payoff: once you’ve set a reference to a collection of shapes, you can
reference each shape in the collection individually using a loop, which is what you’ll
do next. The other advantage to referencing is that you do not need to know the size
of the collection at any time; VBA does all of that for you. If the user doesn’t select
anything, the result of the operation is an empty collection. On the other hand, if the
user selects 1000 objects, you get one collection of 1,000 shapes. The chore of always
having to know exactly how many shapes are selected has been taken over by VBA, so
you can get on with some clever coding.

Looping
A loop is a piece of code that is run, run again, and rerun until a condition is met or
until a counter runs out. The most useful loop to us is the For-Next loop, of which
there are two types: basic For-Next and For-Each-Next.

The basic For-Next loop might look something like this:

Dim lCount as long

For lCount = 1 To 10

 MsgBox "Number" & lCount

Next lCount

This loop counts from one to ten, displaying a message box for each number.

Bonus-ch02.indd 23 6/19/12 5:11:36 PM

24 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

The For-Each-Next loop comes into its own when dealing with collections, however.
The purpose of a collection is to allow the programmer to reference the collection
without knowing what is inside. Thus, to step through all the shapes in the collection,
the following code is used:

Dim shs as Shapes, sh as Shape

Set shs = ActiveSelection.Shapes

For Each sh in shs

 ' We will add our own code into this loop

Next sh

This loop code is a fundamental algorithm when programming CorelDRAW. It is
strongly recommended that you become very familiar with it because you will need
to use it often.

Note the Dim line: You can dimension more than one variable on a single line
by separating each variable with a comma. With large modules that have tens of
variables, this helps to keep down the module length.

This code loops through all the shapes in the collection, and you can replace the
remark line with your own code—of as many lines as needed. Each time the For line is
executed, sh is set to the next shape in the collection. A programmer can then access
that shape’s members within the loop by referencing sh. For example, the following
code sets the width of each shape to two centimeters:

Dim shs as Shapes, sh as Shape

Set shs = ActiveSelection.Shapes

ActiveDocument.Unit = cdrCentimeter

For Each sh in shs

 sh.SizeWidth = 2

Next sh

Because this code operates on each shape, one shape at a time, the size is set relative
only to that shape and not to the selection, so each shape is now two centimeters
wide; but the selection’s width is still approximately the same.

Now it’s time to move on to making decisions and then put loops and decisions
together.

Decision Making—Conditionals
Decision making is what really sets programming apart from macros. Macros in their
original sense are little pieces of “dumb code.” Macros do not make decisions; they
just perform a series of actions without any understanding of what they are doing.
However, as soon as you introduce decision making, a macro becomes a program.

Decisions in VBA are made using the If-Then-Else construction: If (something is
true) Then (do this), or Else (do that). The conditional statement—the “something”—
must be able to return the answer true or false, but VBA is very tolerant. For example,
you could write code in this way:

If MsgBox ("Do you want to hear a beep?", vbYesNo) = vbYes Then Beep

Tip

Bonus-ch02.indd 24 6/19/12 5:11:37 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 25

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

As long as the Yes button is clicked, you will hear a beep. In this case, the result of the
test in the conditional statement was True or False: The button clicked either was the
Yes button (True), or else it was not the Yes button (False).

The statement does not have to reside all on one line and, usually, you would not
write it so. Instead, you might write it something like this:

If sShape.Type = cdrEllipseShape Then

 MsgBox "Ellipse"

Else

 MsgBox "Some other shape"

End If

Like most things in VBA, what is opened must be closed; don’t forget to add an End If
statement. You don’t always have to supply an Else if it’s not necessary, but it is a good
programming technique.

Notice also that you can use Boolean operators—such as And, Or, Not, and Xor—to
combine results from two or more conditional statements.

Conditional Loops—Putting It All Together
Now you know how to assign an outline and a fill (RedFill_BlueOutline), and you’ve
looked at looping through collections (For-Each-Next). You should also have a fairly
good idea about decision making (If-Then-Else). The trick is to put all of this together,
so you can apply the fill and the outline based on whether each object already has a
fill or an outline.

Most of the code already exists for you in the previous code. The only missing
part is a reliable decision-making routine for this particular instance. What you and
your soon-to-be program need to determine for each shape are the following:

Does it have a fill? • If it does, then apply the new fill; else do nothing to the fill.
Does it have an outline? • If it does, then apply the new outline; else do nothing to
the outline.

Fortunately, determining an object’s outline is simple: The Shape.Outline.Type
property returns either cdrOutline or cdrNoOutline. All that needs to be done is to ask
whether the outline type is cdrOutline.

Determining whether a shape has a fill is slightly trickier: ten different fill types
are possible, including Uniform, Fountain, PostScript, Pattern, and so on. Instead of
asking, “Does the shape have a fill?” and having to ask it for all the different types,
it is easier to ask, “Does the shape not have a fill?” and invert the answer, as in “Is
the shape’s fill not of type cdrNoFill?” For this, you use the greater-than and less-than
symbols together (< >), which means, not-equal-to.

Put all this together and here is the resulting code:

Sub Apply_RedFill_BlueOutline()

 Dim dDoc as Document

 Dim sShapes As Shapes, sShape As Shape

 Set dDoc = ActiveDocument

Bonus-ch02.indd 25 6/19/12 5:11:37 PM

26 CorelDRAW® X6: The Official Guide

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

 dDoc.BeginCommandGroup "Apply Red Fill & Blue Outline"

 dDoc.Unit = cdrPoint

 Set sShapes = ActiveSelection.Shapes

 For Each sShape In sShapes

 If sShape.Fill.Type <> cdrNoFill Then

 sShape.Fill.UniformColor.RGBAssign 255, 0, 0

 End If

 If sShape.Outline.Type = cdrOutline Then

 sShape.Outline.Color.RGBAssign 0, 0, 255

 sShape.Outline.Width = 3

 End If

 Next sShape

 dDoc.EndCommandGroup

End Sub

This code steps through the collection of selected shapes, one at a time. It first asks
“Does the shape have a fill type that is not cdrNoFill?” and applies the new fill if the
condition is true. Then it asks “Does the shape have an outline?” and applies the new
outline if it does.

In the code above, notice that before End Sub there’s EndCommandGroup, which
deserves an explanation here. The BeginCommandGroup and EndCommandGroup
pair of methods group all the commands in between together into a single Undo
statement in CorelDRAW, with the name that you specify. After running this macro
once, an item will appear on CorelDRAW’s Edit menu called Undo Apply Red Fill
& Blue Outline, which, when selected, removes all of the commands between the
BeginCommandGroup and EndCommandGroup statements.

Developing from Scratch
Developing solutions from scratch requires experience and planning—experience
with using CorelDRAW’s Object Model, and a plan of what the solution is supposed to
achieve. Most of all, it requires planning. Given sufficient clarity and completeness in
the plan, usually the code for the solution is a simple step.

For very large projects, it is better to break the solution down into small, self-
contained chunks that you can develop independently of the rest and test in
isolation—testing that the code does do what you expect is important and is far
simpler with small chunks of code than with whole projects in a single bite.

Where to Go for More Information
Using VBA to perform automation in CorelDRAW is a lengthy topic that extends well
beyond this chapter. You now have a good understanding of how to record your own
macros and how to play them back. That alone should be quite useful in future simple
automation needs. However, it’s important understand that there is a lot more you can
do than just record a few keystrokes and mouse clicks and call it a day with VBA.

Bonus-ch02.indd 26 6/19/12 5:11:37 PM

 Bonus Chapter 2 Automating Tasks and Visual Basic for Applications 27

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2

To attain a proficiency with VBA in CorelDRAW, two areas of expertise and
knowledge lead to productivity—CorelDRAW’s Object Model and VBA. You’ll find a
lot more information about all of the Macro Editor and command syntax in the VBA
Help files. Also, CorelDRAW’s Help files contain information on Visual Basic for
Applications, and the Object Browser is also a great place to go for more information
on the Object Model. There are plenty of other places to get help as well.

Newsgroups and Forums
Corel offers a large number of newsgroups and support forums for their products.
You can find details on how to access Corel’s newsgroups by going to Corel’s website
at www.corel.com. Navigate to the Community area and then click Newsgroups in the
menu bar for details about Corel’s newsgroups. If you prefer to use web-based forums,
go to www.facebook.com/corel and from the page’s menu bar, click Forums. There’s
also a community app for iOS at the App Store online.

You can seek help freely via Facebook and forums, and because lots of people
use only Facebook or the forum, it is a good idea to check out both when you have
a question. The forums and newsgroups are filled with knowledgeable, friendly
professionals who are usually eager to jump in and lend you a hand.

Corel Web Sites
Corel has several websites that offer information for users. Conduct a search on the
coreldraw.com site. You’ll find free macros and other materials in the Downloads
section that Corel engineers and users have posted.

If you are looking for information on what third-party developers have whipped
up to enhance CorelDRAW, check out the Resources | More | Third-party Tools under
the CorelDRAW product section at www.corel.com.

Visual Basic Web Sites
There are many excellent websites with information on how to program with Visual
Basic, and some on Visual Basic for Applications. Because VBA is a pared-down version
of Visual Basic, you can use the Visual Basic websites as an excellent learning resource.

To find other informational websites, use your favorite Internet search engine to
locate some VB sites, and browse them—and any other sites they link to.

Bonus-ch02.indd 27 6/19/12 5:11:37 PM

Healthy PC / CorelDRAW X6 The Official Guide / BOUTON / 007-1 / Bonus Chapter 2
blind folio 28

Bonus-ch02.indd 28 6/19/12 5:11:37 PM

